Ноу-хау работает точно в соответствии с названием: колеблющийся в центре масс объект обеспечивает вращение разгоняемому по окружности вокруг него телу. Поскольку на обычной праще добиться скоростей более чем в десятки метров в секунду сложно, здесь разгон идёт по расширяющейся спирали, ведь чем дальше разгоняемый объект от центра, тем бóльшую энергию ему можно придать без механического разрушения элементов системы. Чтобы обеспечить спиральному пращетрону стабильность, под спиральным разгонным треком находятся контрмаховики, компенсирующие нагрузки, которые действуют на конструкцию.
Но недостатки этой системы в том, что если мы хотим сохранить размеры пращетрона вменяемыми, то максимум, до которого он сможет разогнать тело, — 6–7 км/с; правда, ускоряемый им объект будет подвергаться перегрузкам в 40 000–60 000 g. Космонавт, посланный таким образом в небо, попадёт туда разве что в духовном смысле, а вот в физическом его ждут большие неприятности. Космический телескоп и прочие хрупкие грузы также предлагать к такой отправке не стоит.
Огромная энергия и скорость отправляемого на орбиту тела предполагают, что последнее должно быть устойчивым к нагреву, а ещё тонким и длинным — иначе сопротивление атмосферного воздуха будет зашкаливающим. В любом случае, настаивают создатели, для запуска на 7 км/с носовой обтекатель должен быть абляционным, как у аппаратов SpaceX, испаряющийся пластик которых уносит с собой тепловую энергию. Поскольку часть от 7 км/с будет теряться из-за взаимодействия с атмосферой, отправляемый в небо груз в идеале должен иметь собственную предельно лёгкую и компактную ракетную ступень, которая позволит ему в апогее слегка ускориться, чтобы достичь 7,6 км/с, требуемых природой для выхода на низкую околоземную орбиту.
Выгоды. Наземная многоразовая система пуска, пригодная для тысяч стартов в год; нет нужды в дорогом ракетном топливе; электричество, потребляемое электромоторами, которые раскручивают пращетрон, можно брать из сети (в реальности придётся строить запасающие мощности конденсаторного типа и ЛЭП толщиной с ногу тяжелоатлета, ибо энергия в такой системе расходуется за очень короткое время).
Лучшим способом использования Slingatron в первое время, до создания устойчивых к сверхперегрузкам электроники и спутников, будет отправка на орбиту ракетного топлива, воды и прочих простых материалов в контейнерах. Да, их придётся ловить на орбите неким роботизированным манипулятором. Но и стоимость вывода таких контейнеров, из которых после использования содержимого можно строить модули орбитальных станций, будет не $2 000–5 000 за килограмм, что сейчас считается минимально возможной ценой, а на порядок меньше.
По расчётам HyperV Technologies Corp., диаметр разгонной спирали устройства, ускоряющего объекты до 6–7 км/с, будет в пределах 200–300 м, что означает не слишком большую массу и стоимость. Да и замена жидкого водорода и одноразовых двигателей за многие миллионы долларов на многоразовую систему сходной стоимости и электроэнергию как «топливо» должны радикально снизить затраты на запуски.
В перспективе грузы, запускаемые в космос таким образом, могут использоваться для накопления на орбите с последующей переправкой на Луну. Там, кстати, построить ещё один "пращетрон" будет значительно проще, чем на Земле, ведь мешающей атмосферы на спутнике нет, а скорость, нужная для преодоления гравитации, вшестеро меньше. Следовательно, снабжение топливом, водой и стройматериалами любых автоматизированных или пилотируемых космических миссий к более далёким телам Солнечной системы в теории радикально упростится.
Есть будущее и у менее толерантных к перегрузкам грузов. При увеличении диаметра разгонной спирали перегрузки будут падать, и значительно, пропорционально росту радиуса поворота, то есть диаметру спирали. Но чтобы пойти на создание действительно крупных разгонных машин такого типа, нужна демонстрация, заявляют разработчики. Пока самая крупная построенная модель пращетрона при 30 оборотах в секунду разогнала груз весом в 227 г до скорости в 100 м/с. То есть всего лишь до кинетической энергии обычной пули.
А вот за четверть миллиона долларов предполагается создание демоверсии с частотой вращения в 60 раз в секунду, диаметром в 5 м и скоростью разгоняемого тела в 1 км/с при весе в 453,6 г — то есть с параметрами ближе к бронебойному снаряду. Цель разработчиков проста: при достижении этого результата за названную «скромную» сумму космические агентства покрупнее, включая НАСА, вряд ли останутся совершенно не заинтересованными в разработке сходных наземных ускорителей. Хотя для этого и придётся преодолеть уйму сложностей: даже для скоростей разгона в 1 км/с вряд ли удастся обойтись без эффективной системы охлаждения как минимум электродвигателей; непростой будет и отработка механически нагруженных элементов системы.
Источники: kickstarter.com и computerra.ru.